AN IMPROVED SYNTHESIS OF DICHLOROFLUORAMINE, FNCI2*

Joseph S. THRASHER

Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336 (U.S.A.)

and Darryl D. DESMARTEAU

Howard L. Hunter Chemistry Laboratory, Clemson University, Clemson, SC 30634-1905 (U.S.A.)

SUMMARY

Low-temperature fluorination of N,N-dichloro-1-fluoroformamide, $FC(O)NCl_2$, has provided a more convenient, high-yield (75%) synthesis of dichlorofluoramine, $FNCl_2$, than was previously available. In an attempt to further expand the novel metal fluoride promoted conversion of N-Cl bonds to N-Br bonds, both $FC(O)NCl_2$ and $FNCl_2$ were reacted with bromine in the presence of various alkali metal fluorides. No evidence was found for the formation of either FC(O)NBrCl and $FC(O)NBr_2$ or FNBrCl and $FNBr_2$ in these reactions. In fact, $FC(O)NCl_2$ was found to decompose to $C(O)F_2$, N_2 , and Cl_2 in the presence of alkal metal fluorides.

INTRODUCTION

In 1984 Zheng et al. reported a novel fluoride promoted conversion of N-Cl bonds to N-Br bonds as shown in eqn. (1) [1]. It then became of interest

to see whether or not this methodology could be extended to the preparation of unknown *N*-halo amines such as FNBrCl and FNBr₂. However, before this investigation could be carried out, it was deemed necessary to find a more convenient and safer method of preparing laboratory quantities of dichlorofluoramine, FNCl₂. The results of this investigation are reported herein.

EXPERIMENTAL

The compound $FC(0)NCl_2$ was prepared by literature methods [2]. Cesium fluoride (99.9%) was activated by fusing in a Pt dish, followed by grinding in jar mill to a very fine powder under anhydrous conditions, while NaF was taken from laboratory stock and dried *in vacuo*. Bromine was dried over P_2O_5 and distilled prior to use.

Caution! Many <u>N</u>-halo compounds are known to be powerful explosives; therefore, suitable safety precautions should be kept in mind. We advise that the preparations and reactions of these materials be done on a small scale.

Infrared spectra were obtained on a Perkin-Elmer 1430 Data System; a 10-cm glass cell fitted with KCl windows was employed. Mass spectra were taken on a HP 5895A GC-MS system. ¹⁹F NMR spectra were recorded on a JEOL FX-90 Q spectrometer at 84.25 MHz and referenced to internal CCl₃F.

Synthesis of dichlorofluoramine, FNCl₂

The dichloroamide FC(O)NCl₂ (3.0 mmol) was condensed into the bottom of a 150 mL stainless steel cylinder chilled to liquid-nitrogen temperature. The level of the liquid nitrogen was then raised and a slight excess of elemental fluorine (3.5 mmol) was slowly added. The reaction vessel was placed in a Dewar of evaporating liquid nitrogen and allowed to warm slowly to room temperature overnight. The vessel was then rechilled to -196°C and attached to the vacuum line where any noncondensible materials were removed through a scrubber filled with soda lime. The condensible materials were then transferred to the vacuum system and passed through a series of traps at -80, -115 to -120, and -196°C. The trap at -80°C stopped 0.1 mmol of unreacted FC(O)NCl₂, while the trap maintained at between -115 and -120°C held the desired product FNCl₂ (2.25 mmol) in 75% yield. The identity and purity of the FNCl₂ was ascertained primarily through infrared spectroscopy [3]. The -196°C trap contained (3.5 mmol) primarily COF₂.

Reactions of FC(O)NCl₂ and FNCl₂ with Br_2 and/or MF, where M = Na, Cs

In a typical reaction (see Table 1), NaF (0.1 g; 2.38 mmol) was loaded into a 250-mL glass vessel in a drybox under nitrogen atmosphere. The vessel was then evacuated, and FC(0)NCl₂ (0.5 mmol) was condensed in at -196^oC. The reaction

TABLE 1
Reactions of FC(O)NCl₂ and FNCl₂ with Br₂ and/or MF, where M = Na, Cs

Reactants (mmol)		Conditions (^O C/h)	Volatile Products (mmol)
FC(O)NCl ₂ (0.5)	Br ₂ (2.0)	-196 ^O C to RT/2-3 h RT/12 h	No Reaction
FC(0)NCl ₂ (4.8)	CsF (10.0)	-196 ^O C to RT/2-3 h RT/12 h	IR - COF ₂ noncondensibles - N ₂
FC(0)NCl ₂ (0.5)	NaF (2.38)	-196 ^O C to RT/2-3 h RT/12 h	COF ₂ (0.5), Cl ₂ (0.25) noncondensibles - N ₂
FC(O)NCl ₂ (5.0)	NaF (15.0)/ Br ₂ (10.0)	-196 ^O C to RT/2-3 h RT/ 12 h	IR - COF ₂ noncondensibles - N ₂ unreacted Br ₂
FC(0)NCl ₂ (4.8)	CsF (10.0)/ Br ₂ (10.0)	-196 ^O C to RT/2-3 h RT/12 h	IR - COF ₂ noncondensibles - N ₂ unreacted Br ₂
FNCi ₂ (2.0)	CsF (5.0)/ Br ₂ (5.0)	-196 ^O C to RT/2-3 h RT/12 h	IR - FNO ₂ (trace) [8] IR - t-N ₂ F ₂ (trace) [9] noncondensibles- N ₂ unreacted Br ₂ & BrCl
FNCI ₂ (2.25)	CsF (5.0)/ Br ₂ (5.0)	-196 ^O C to -50 ^O C/2-3 h -40 ^O C/3 h & -30 ^O C/12 h 0 ^O C/12 h 10 ^O C/12 h	unreacted FNCl ₂ (1.16) noncondensibles (0.55) unreacted Br ₂ & BrCl

mixture was allowed to warm slowly to room temperature and react overnight. The volatile products were then moved to the vacuum line for trap-to-trap distillation. Lots of noncondensibles, presumably nitrogen, were removed during this process. The remaining condensibles, which were yellow in color, were then transferred to a trap containing mercury in order to test for the presence of chlorine. Approximately, one-third or 0.25 mmol of the condensibles were scrubbed by the mercury, and the remaining condensibles (~0.5 mmol) were shown by infrared spectroscopy to be predominantly COF₂.

RESULTS AND DISCUSSION

The need for an improved synthesis of FNCl₂ was recently made obvious in a report to this Journal by Gibert and co-workers [4]. In this paper, the authors overview the previous routes to FNCl₂ and describe their modifications to a route originally reported by Pankratov and Sokolov [5], namely the fluorination of NH₄Cl. Although this method avoids the dangers associated with preparing FNCl₂ from NaN₃ and CIF [6] (explosive intermediate CIN₃ [7]), it still suffers from both relatively low yields and difficulties in the separation of FNCl₂ from other side products such as CINF₂ and Cl₂ [4]. In our investigation, we found that laboratory quantities of CINF₂ could be produced in 75% yield from the low-temperature fluorination of FC(O)NCl₂ (eq 2). In addition, the product is easily separated from any unreacted starting

$$FC(O)NCl2 + F2 \xrightarrow{-196^{O}C \text{ to RT}} FNCl2 + COF2$$
 (2)

materials as well as the COF₂ and any other by-products formed.

The reactivity of FC(O)NCl₂ in the presence of bromine and alkali metal fluorides both separately and together was then studied in an attempt to prepare FC(O)NBrCl and/or FC(O)NBr₂. The formation of either of these new haloamines was precluded by the more ready decomposition of FC(O)NCl₂ in the presence of fluoride ion as shown in equation 3. This observation is not surprising in view of the

$$FC(O)NCl_2 + MF \xrightarrow{-196^{O}C \text{ to RT}} COF_2 + MCl + \frac{1}{2}N_2 + \frac{1}{2}Cl_2$$
 (3)

fact that the decomposition of FC(O)NSF₂ to COF₂ and NSF is known to take place at temperatures as low as 0^oC in the presence of cesium fluoride [10]. The reaction

of $FNCl_2$ with Br_2 and CsF failed to produce any evidence for either FNBrCl or $FNBr_2$ under conditions tried (see Table 1). Again, large amounts of noncondensible gas were formed during each reaction.

ACKNOWLEDGEMENT

We thank Dr. K. O. Christe for a preprint of his article prior to publication. D.D.D. gratefully acknowledged the financial support of the U.S. Army Research Office and the National Science Foundation.

REFERENCES

- 1 Y. Y. Zheng, Q. -C. Mir, B. A. O'Brien and D. D. DesMarteau, <u>Inorg. Chem.</u>, <u>23</u> (1984) 518.
- (a) J. M. Shreeve and R. A. DeMarco, <u>J. Chem. Soc. D.</u> (1971) 788. (b) R. A. DeMarco and J. M. Shreeve, J. Fluorine Chem., 1 (1972) 269.
- 3 R. P. Hirschmann, L. R. Anderson, D. F. Harnish and W. B. Fox, <u>Spectrochim.</u> Acta, Part A, 24A (1968) 1267.
- 4 J. V. Gibert, R. Conklin, R. D. Wilson and K. O. Christe, <u>J. Fluorine Chem.</u>, <u>48</u> (1990) 361.
- a. A. V. Pankratov and O. M. Sokolov, <u>Zh. Neorg. Khim.</u>, <u>13</u> (1968) 2881. b.
 A. V. Pankratov, O. M. Sokolov and D. S. Miroshnichenko, <u>Zh. Neorg. Khim.</u>, <u>13</u> (1968) 3139.
- a. B. Sukornick, R. F. Stahl and J. Gordon, <u>Inorg. Chem.</u>, <u>2</u> (1963) 875. b. J.
 Gordon and B. Sukornick, U.S. Pat. 3 975 501 (1976); <u>Chem. Abstr.</u>, <u>85</u> (1976) 162796w.
- 7 D. E. Milligan, <u>J. Chem. Phys.</u>, <u>35</u> (1961) 372.
- D. L. Bernitt, R. H. Miller and I. C. Hisatsune, <u>Spectrochim. Acta, 23A</u> (1967) 237.
- 9 S. T. King and J. Overend, <u>Spectrochim. Acta</u>, <u>22</u> (1966) 689.
- 10 J. K. Ruff, <u>Inorg. Chem.</u>, 5 (1966) 1787.